ABSTRACT
Arterial blood pressure (ABP) and photoplethysmography (PPG) waveforms both contain vital physiological information for the prevention and treatment of cardiovascular diseases. Extracted features from these waveforms have diverse clinical applications, including predicting hyper- and hypo-tension, estimating cardiac output from ABP, and monitoring blood pressure and nociception from PPG. However, the lack of standardized tools for feature extraction limits their exploration and clinical utilization. In this study, we propose an automatic feature extraction tool that first detects temporal location of landmarks within each cardiac cycle of ABP and PPG waveforms, including the systolic phase onset, systolic phase peak, dicrotic notch, and diastolic phase peak using the iterative envelope mean method. Then, based on these landmarks, extracts 852 features per cardiac cycle, encompassing time-, statistical-, and frequency-domains. The tool’s ability to detect landmarks was evaluated using ABP and PPG waveforms from a large perioperative dataset (MLORD dataset) comprising 17,327 patients. We analyzed 34,267 cardiac cycles of ABP waveforms and 33,792 cardiac cycles of PPG waveforms. Additionally, to assess the tool’s real-time landmark detection capability, we retrospectively analyzed 3,000 cardiac cycles of both ABP and PPG waveforms, collected from a Philips IntelliVue MX800 patient monitor. The tool’s detection performance was assessed against markings by an experienced researcher, achieving average F1-scores and error rates for ABP and PPG as follows: (1) On MLORD dataset: systolic phase onset (99.77 %, 0.35 % and 99.52 %, 0.75 %), systolic phase peak (99.80 %, 0.30 % and 99.56 %, 0.70 %), dicrotic notch (98.24 %, 2.63 % and 98.72 %, 1.96 %), and diastolic phase peak (98.59 %, 2.11 % and 98.88 %, 1.73 %); (2) On real time data: systolic phase onset (98.18 %, 3.03 % and 97.94 %, 3.43 %), systolic phase peak (98.22 %, 2.97 % and 97.74 %, 3.77 %), dicrotic notch (97.72 %, 3.80 % and 98.16 %, 3.07 %), and diastolic phase peak (98.04 %, 3.27 % and 98.08 %, 3.20 %). This tool has significant potential for supporting clinical utilization of ABP and PPG waveform features and for facilitating feature-based machine learning models for various clinical applications where features derived from these waveforms play a critical role.
Competing Interest Statement
Dr. Cannesson is a consultant for Edwards Lifesciences and Masimo Corp, and has funded research from Edwards Lifesciences and Masimo Corp. He is also the founder of Sironis and Perceptive Medical and he owns patents and receives royalties for closed loop hemodynamic management technologies that have been licensed to Edwards Lifesciences.
Funding Statement
This work was supported by the National Institutes of Health (NIH): R01EB029751 and R01HL144692.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Institutional Review Board of University of California, Los Angeles gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
The interested parties may reach out to the first author at (rpal{at}mednet.ucla.edu) or the corresponding author at (mcannesson{at}mednet.ucla.edu) to request access to the MLORD dataset and the proposed ABP/PPG waveform featurization tool.